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Abstract

The functioning of the solid–gas reactors is governed by several combined phenomena: heat and mass transfer and

solid–gas chemical reaction. Heat and mass transfer phenomena have an antagonistic behavior in the reactive material

used in the solid–gas reactors. This behavior of the material influences strongly both their power and energy perfor-

mance and their design. In this paper, an optimal tree-shaped network for heat and mass transfer is constructed by

using the constructal approach and the entropy generation minimisation method. The results of these optimisation

show that, for a given heat and gas diffuser and a fixed porosity, we can find an optimal diffusers network design for any

material. These optimal designs have the same minimum of entropy generation or ‘‘entropy generation number’’.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Several emergent technologies involve solid–gas

reactors, for example, energy conversion systems, natu-

ral gas storage and hydrogen storage [1,2], etc. The

successful implementation of solid–gas reactors greatly

depends on the transfer of heat and gas inside the por-

ous active solid. This material then exhibits a strong

coupling between heat and mass transfer and solid–gas

chemical reaction. Two main ways can be used to im-

prove the thermal characteristics of porous materials:

(i) Mixing the active solid with a highly conductive

inert binder;

(ii) Compacting the active solid powder.

These two processes are combined in the manufac-

turing mode of reactive blocks developed by our labo-
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ratory, using expanded natural graphite (ENG) as

binder [3].

These two processes may also lead to a decrease in

mass flow. Fig. 1 shows the antagonistic evolution of the

thermal conductivity and permeability of the active solid

composite and the expanded natural graphite, versus the

apparent density of this material in the composite [4,5].

There is a strong competition between the simultaneous

improvement of heat and mass transfer in such active

composites, and for this, one can vary the density of

expanded natural graphite to manage the heat and mass

transfer.

The performance of expanded natural graphite

composites has a direct effect on the design of the reactor

and on the whole thermochemical system. If the density

of expanded natural graphite is low, heat exchangers

must be added to increase heat transfer in the reactor.

On the other hand, gas diffusers must be added to in-

crease mass transfer in the reactor when the density of

expanded natural graphite is high. The problem of

gas diffusers distribution in a reactor was investigated

by Jolly and Mazet [6] and Mazet et al. [7], where the

number of the gas diffusers was fixed and the design
ed.
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Nomenclature

A affinity of reaction, J kg�1

Ai ith construct area, m2

Aip heat and gas collector area for the ith con-
struct, m2

Di heat and gas collector thickness for ith
construct, m

fi ith construct shape, fi ¼ Hi=Li

h gas specific enthalpy, J kg�1

Hi ith construct height, m
Jm vapour mass flux density, kgm�2 s�1

Jq heat flux density, Wm�2

Jv volume flux density, m s�1

ki permeability of ith construct material, m2

~ki ratio of permeability, kp=ki
kp permeability of heat and gas collector, m2

Li ith construct length, m
_m volumetric rate of the gas, kgm�3 s�1

_mi total gas flow rate for the ith construct,
kg s�1

ni number of ði� 1Þth constructs optimised in
the ith construct

P pressure, Pa

Pið _rÞ entropy generation rate of volume Vi , WK�1

_q volumetric heat generation rate, Wm�3

_qi total heat generation rate for the ith con-
struct, W

r heat of reaction, r ¼ _q= _m, J kg�1

Si entropy generation number of ith construct
T temperature, K

Vi ith construct volume, m3

Vip heat and gas collector volume for ith con-
struct, m3

W thickness of the material, m
_X reaction rate, kgm�3 s�1

x, y Cartesian coordinates, m

Greek symbols

ei ratio of dimensions, Di=Hi

g characteristic of the collector and the

chemical system, g ¼ kplT=kpq2r2

/i ratio of areas, Aip=Ai

ki thermal conductivity of ith construct mate-
rial, Wm�1 K�1

kp thermal conductivity of heat and gas col-

lector, Wm�1 K�1

~ki ratio of thermal conductivity, kp=ki

l dynamic viscosity, kgm�1 s�1

m kinematic viscosity, m2 s�1

q gas density, kgm�3

_r local entropy generation, Wm�3 K�1

Subscripts

i construct of ith order
MT mass transfer

min minimum

max maximum

opt optimum

HT heat transfer
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Fig. 1. The effect of density of the material on the permeability

and thermal conductivity.
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(configuration) of the reactor was also imposed. The

objective of that work was to analyse the heat and mass

transfer competition in active composite blocks.

The new problem considered in this paper is to find

the optimal configuration: the number, size and position

of gas diffusers and heat exchangers, for a given volume

of an active material and a given exchanger area. This

problem is quite close to the volume to point flow

problem proposed by Bejan [8], on which contructal

design was first proposed: for a given volume of reactor,

what are the optimal number and size for both gas dif-

fusers and heat exchangers? However, Bejan’s criterion

(minimisation of the maximum temperature difference

[9], or pressure difference [10] within the system) cannot

be used here, because of the coupling of the two driving

forces, temperature and pressure gradients. The alter-

native we chose is the minimisation of the total entropy

generation. This criterion was dictated by our domain of

interest and its related objective: the improvement of

exergy efficiency in energy conversion systems. It will be

shown, however, that entropy generation minimisation
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leads to Bejan’s results when applied to a single trans-

port phenomena.

In this paper, concepts of Thermodynamics of Irre-

versible Processes [11] are used in the description of the

reactive material. This enabled us to quantify the total

entropy generated by the system. Furthermore, Con-

structal design is performed in Section 3, and the results

are later compared with Bejan’s results. Finally, numer-

ical examples, based on realistic materials, reveal some

interesting constructal solid–gas reactor properties.
2. Solid–gas reactor model

This section reviews irreversible thermodynamics

concepts in order to apply them to solid–gas systems. A

solid–gas reactor contains a porous solid that is able to

fix a certain amount of substance, which enters the

reactor in vapour phase. Two types of thermodynamic

systems can be used:

(i) Physical adsorption of a vapour on an adsorbent

such as zeolite or active carbon;

(ii) Chemical reaction, consuming a solid S1 and pro-

ducing a new compound S2, after reacting with the

vapour. Chloride, nitrates, hydrates or hydrides

can be used, depending on the nature of the vapour.

Although these two systems lead to different ther-

modynamics properties (e.g. pressure–temperature re-

lationship), they are quite similar when transport

phenomena are under consideration. For an adequate

local description, both require a control volume that is

at the same time sufficiently small so that pressure and

temperature can be considered uniform, but sufficiently

large to contain a large number of active sites. Both can

be treated as a continuum, characterised by an equiva-

lent thermal conductivity k and equivalent permeability
kD. Finally, thermodynamic equilibrium is assumed at

the local scale: adsorption or chemical kinetics are

controlled by heat and mass transfer, and each active

site imposes its equilibrium vapour pressure. As a con-

sequence, the following derivations, which are carried

out for chemical systems, are general and could be easily

extended to adsorption systems.

2.1. Local entropy generation rate

The reactive porous medium with heat and mass flow

is a mixture of expanded natural graphite and reactive

solid (S1). This solid reacts with a gas (G) to produce a

new solid (S2) according to the chemical reaction:

S1þG! S2 ð1Þ

The reaction (1) generates heat that flows through the

porous material from the active site to the heat ex-
changer while gas is consumed. The reaction (1) can

also be performed in the reverse direction, by modifying

the temperature-pressure constraint. In that case, solid

(S1) and gas (G) are produced while heat is consumed

and the flow of heat is from the collectors to the active

sites.

Assuming that the Gibbs equation is valid at the local

scale, mass conservation, energy conservation, and sec-

ond law of thermodynamics lead to [12]:

oq
ot

¼ �r � Jm þ _m

ou
ot

¼ �r � ðJq þ JmhÞ

_r ¼ Jq � r
1

T

� �
þ Jv �

rP
T

� �
þ A
T
dX
dt

ð2Þ

Next, phenomenological laws are deduced from the

local entropy generation expression, which displays the

generalised forces related to each flux. By neglecting

thermodynamic coupling, we obtain

Jq ¼ Lqr
1

T

� �

Jv ¼ Lv
rP
T

dX
dt

¼ LX
A
T

ð3Þ

The phenomenological coefficients LV and Lq can be

deduced from the permeability and heat conductivity by

comparing the phenomenological laws with the Darcy

and Fourier laws. The coefficient LX is in general as-

sumed to be infinite. In this case the affinity must be

equal to zero, in order to account for a finite chemical

reaction rate. The infinite LX is equivalent to the

assumption that chemical equilibrium is maintained at

the local scale. In summary, we obtain

Lq ¼ kT 2 Lv ¼
kD
l
T LX ¼ 1 ð4Þ

When the local pressure and temperature remain con-

stant in time, the system (2) becomes:

_m ¼ �qr � Jv ð5Þ

_q ¼ �r _m ¼ �r � Jq ð6Þ

_r ¼ Jq � r
1

T

� �
þ Jv �

rP
T

� �
þ A
T

_m ð7Þ

Eq. (3) shows that the mass and heat balances are cou-

pled through the chemical reaction. In general, the

integration of Eqs. (5)–(7) can be performed numerically

by using the phenomenological laws (2) and the phe-

nomenological coefficients (4). The entropy generation

rate can then be evaluated.
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Fig. 2. Reactor model or elemental volume.
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2.2. Solid–gas reactor

A parallelepiped elemental volume is chosen for this

study; its cross-section area is represented in Fig. 2. This

elemental volume is similar to the one that Bejan used to

introduce the constructal method [11,12]. This permits

the analytical integration of Eqs. (5)–(7), leading to a

simple expression for entropy generation.

As shown in Fig. 2, the gas enters the elemental

volume V0 through a diffuser, for the chemical reaction,
as described in the previous section. This reaction gen-

erates heat which is collected over the volume V0 and
lead to the heat sink, through heat collector, on its

boundary (at x ¼ 0; �D0=2 < y < D0=2).
It is important to note that heat collector and gas

diffuser are combined in an element, which called

‘‘integrated heat and gas collector’’. This collector is

characterised by a single length scale, the thickness D0.
This may seem difficult to realise in practice, however,

this type of collector has already been studied [13].
3. Construction of the network of diffusers

The method of entropy generation minimisation or

the minimisation of the dimensionless ‘‘entropy gener-

ation number’’ is used to optimise and to construct heat

and gas collector network.

3.1. Elemental volume

Consider the elemental volume in Fig. 2, and assume

that:


 The thermal conductivity and the permeability

of the diffuser are much greater than the thermal con-

ductivity and the permeability of the material. The

dimensionless conductivity and permeability are defined

as:

~k0 ¼
kp

k0
� 1; ~k0 ¼

kp
k0

� 1 ð8Þ

 The walls of the system are adiabatic and imper-

meable except at the left end of the diffuser ðx ¼ 0;
�D0=2 < y < D0=2Þ where a temperature T0 and a

pressure P0 are imposed.

 The heat generation rate ( _q) and the gas flow rate

( _m) are uniformly distributed. The size of the elemental
volume A0 ¼ H0L0 is known and fixed, but the rectan-
gular shape f0 ¼ H0=L0 may vary. The projected area of
the collector is A0p ¼ D0L0, where D0 is its thickness. The
heat and the gas flow geometry is two dimensional over

the area A0. Hence V0 ¼ A0W , where W is the dimension

perpendicular to the plane of Fig. 2. According to the

first assumption, the heat and gas flow vertically through

the material, and horizontally through the diffuser. In

addition, because of symmetry, we consider only one

half of the system ðy P 0Þ.
The entropy generated inside the collector by heat

conduction and gas flow is evaluated from Eqs. (5)–(7)

by integrating in the x direction,

P0ð _rxÞ ¼ 2
Z W

0

dz
Z D0

2

0

dy
Z L0

0

_rx dx ð9Þ

where

_rx ¼ Lq
o

ox
1

T

� �� �2
þ Lv

1

T
op
ox

� �2

According to the Eq. (4) and the boundary conditions

x ¼ L0;
oT
ox

¼ 0 and
oP
ox

¼ 0 ð10Þ

x ¼ 0; T ð0Þ ¼ T0 and P ð0Þ ¼ P0 ð11Þ

we obtain

P0ð _rxÞ ¼
E0
3

ð1� e0Þ2

e0f0

" #
ð12Þ

where E0 and e0 are

E0 ¼
ð _qV0Þ2

W kpT 2
þ ð _mV0Þ2l

WkpTq2
and e0 ¼ D0=H0 ð13Þ

Note that e0 is the ratio between collector thickness and
elemental volume height, and E0 is a constant because _q,
_m, the transfer properties of the collector ðkp; kpÞ and the
thermodynamic properties of the solid–gas system ðl; qÞ
are assumed constant.

Similarly, the entropy generated inside the elemental

volume V0 is obtained by integrating Eqs. (4)–(7) in the y
direction subject to the boundary conditions:

y ¼ H0
2
;

oT
oy

¼ 0 and
oP
oy

¼ 0 ð14Þ

y ¼ D0
2
; T ð0Þ ¼ T0 and Pð0Þ ¼ P0 ð15Þ
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We obtain

P0ð _ryÞ ¼
ð1� e0Þ3f0

12

ð _qV0Þ2

W k0T 2

 
þ ð _mV0Þ2l

Wk0Tq2

!
ð16Þ

Notice that the latter factor differs from E0 by the values
of the thermal conductivity k and the permeability k.
The total entropy generated inside the elemental

volume is the sum

P0ð _rÞ ¼ P0ð _rxÞ þ P0ð _ryÞ

which yields

P0ð _rÞ ¼ E0
ð1� e0Þ2

3

1

e0f0

"
þ 1
4

~k0 þ ~k0g
1þ g

 !
ð1� e0Þf0

#

ð17Þ

Here g is a constant parameter depending on collector
transfer properties and solid–gas thermodynamic prop-

erties

g ¼ kplT
kpq2r2

ð18Þ

For conciseness in the presentation of general results,

we use the dimensionless entropy generation number:

S0ðf0Þ ¼
P0ð _rÞ
E0

¼ ð1� e0Þ2

3

1

e0f0

"
þ 1
4

~k0 þ ~k0g
1þ g

 !
1ð � e0Þf0

#

ð19Þ

For a given type of diffuser and reactive material, S0
depends only on the shape f0 and the the ratio between
collector thickness and elemental volume height e0.
When e0 is specified, the optimal shape can be deter-
mined by minimizing the entropy generation number:

oS0
of0

� �
e0

¼ 0 ð20Þ

Results are reported in Table 1 for the single transfer

( _m ¼ 0, or _q ¼ 0) and for coupled transfer ( _q ¼ r _m) and
will be commented later.
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3.2. Constructal sequence

3.2.1. First construct

Elemental volumes of fixed size and optimal shape

are used to fill a large volume (V1) as shown in Fig. 3.
This first construct (A1) contains n1 elemental volumes,
A1 ¼ n1A0. The heat and the gas are carried by a new
diffuser, which has the same thermal conductivity and

permeability as the elemental diffuser (D0) but its
thickness is D1.
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The first construct conducts heat and gas in almost

the same way as the elemental volume. However, in the

first construct the elemental material is replaced by a

composite one. According to the assumption (8), the

effective thermal conductivity and the effective perme-

ability of the composite material are

k1 ¼ kp
D0
H0

¼ kpe0 and k1 ¼ kp
D0
H0

¼ kpe0 ð21Þ

It is worth noting that the dimensionless conductivity

and permeability are equal to 1=e0:

~k1 ¼
kp

k1
¼ 1

e0
and ~k1 ¼

kp
k1

¼ 1

e0
ð22Þ

Similarly to the elemental volume, the expression of

the entropy generated by the volume V1 is

P1ð _rÞ ¼ E1
ð1� e1Þ2

3

1

e1f1

�
þ 1

4e0
ð1� e1Þf1

�
ð23Þ

where E1, f1 and e1 are respectively a constant parame-
ter, the shape factor, and the dimensionless thickness of

the first construct,

E1 ¼ ð1þ gÞ _q21
W kpT 2

; f1 ¼ H1=L1; e1 ¼ D1=H1 ð24Þ
Table 2

The minimum entropy generation number, number of optimised con

ðS0Þmin 1
3
ðe0Þ

�1
2 ð1� e0Þ

5
2ð1þ gÞ

�1
2 ð~k0 þ g~k0Þ

1
2

ðS1Þmin 1
3
ð1� /1Þ

5
2ðe0optÞ

�1
2 ð1� e0optÞ�2ð/1 � e0optÞ

ðSiÞmin iP 1 1
3
ð1� /iÞ

5
2ðei�1optÞ

�1
2 ð1� ei�1optÞ�2ð/i � ei�

n1opt ð1� /1Þ
1
2ðe0optÞ

�1
2 ð1� e0optÞ

�1
2 ð/1 � e0optÞ

1
2ð

niopt iP 2 ð1� /iÞ
1
2ðei�1optÞ

�1
2 ð1� ei�1optÞ�1ð/i � ei�1o

ðD1D0Þopt ðe0optÞ
�1
2 ð1� e0optÞ

�1
2 ð1þ gÞ

�1
2 ð~k0 þ g~k0Þ

1
2ð/

ð Di
Di�1

Þopt iP 2 ðei�1optÞ�1ð1� ei�1optÞ�1ð1þ 5ei�1optÞ
1
2ð1þ
The total heat generated by the reactive mixture

contained in the volume V1 is _q1. The entropy generation
number of the first construct depends only on f1, e1 and
e0:

S1ðe0; e1; f1Þ ¼
P1ð _rÞ
E1

¼ ð1� e1Þ2

3

1

e1f1

�
þ 1

4e0
ð1� e1Þf1

�
ð25Þ

In conclusion, we arrive at an optimisation problem

with several variables. The Langrage multipliers method

is used to solve this problem. The volume fraction of the

collector allocated to A1 is assumed fixed:

/1 ¼
A1p
A1

¼ e1ð1� e0Þ þ e0 ð26Þ

The optimal shape, minimum entropy generation

number, optimal number of elemental volumes, and

optimal ratio of collector thicknesses are obtained by

minimizing the aggregate expression:

‘1 ¼ S1 � b1½/1 � e1ð1� e0Þ þ e0� ð27Þ

with respect to f1, e1 and e0, and by taking in account
constraint (26).

In this expression b1 is a Langrage multiplier. The
results are presented in Tables 1 and 2.

3.2.2. Higher-order constructs

A larger volume (second construct) is designed next;

by optimising the assembly of a number of first con-

structs. It is found that the expression for the entropy

generation rate of ith construct is similar to that of the
first construct. The general form of entropy generation

number is

Siðei�1; ei; fiÞ ¼
Pið _rÞ
Ei

¼ ð1� eiÞ2

3

1

e f

�
þ 1

4e
ð1� eiÞfi

�
ð28Þ
structs and ratio of collector thicknesses

�1
2

1optÞ
�1
2

1þ gÞ
�1
2 ð~k0 þ g~k0Þ

1
2

ptÞ
1
2ð1þ 5ei�1optÞ

1
2ð1þ 4ei�1optÞ

�1
2 ½�4ðei�1optÞ2 þ 3ei�1opt þ 1�

1 � e0optÞ

4ei�1optÞ
�1
2 ð/i � ei�1optÞ½�4ðei�1optÞ2 þ 3ei�1opt þ 1�
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where

Ei ¼ ð1þ gÞ _q2i
W kpT 2

fi ¼ Hi=Li ei ¼ Di=Hi ð29Þ

For a given heat power _qi, total volume Vi , and col-
lector volume fraction /i, the minimum total entropy

generation can be found subject to the constraint:

/i ¼
Aip

Ai
¼ eið1� ei�1Þ þ ei�1 ð30Þ

The method of Langrage multipliers delivers the

optimal shape, minimum entropy generation number,

optimal number of previous constructs, and optimal

ratio of collector thicknesses. This is done by minimizing

the function

‘i ¼ Si � bi½/i � eið1� ei�1Þ þ ei�1� ð31Þ

with respect to ei�1, ei and fi, where bi is a Langrage

multiplier; and by using the constraint /i.
Material 1
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0D
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1D

0D

1D
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0

–

0D

1L

1D

0D

1D

Material 3

0D
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1D

0D

Material 4
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Fig. 4. Optimal designs for four different materials (Table 3).
4. Results and discussion

The results are reported in Tables 1 and 2, where

e0opt ¼
1

12
5/1



þ 2� ð25/21 � 4/1 þ 4Þ
1
2

�
ð32Þ

ei�1opt ¼
1

12
5/i



þ 2� ð25/2i � 4/i þ 4Þ

1
2

�
: ð33Þ

In Table 1 we see the optimal shapes obtained after the

minimisation of the entropy generation number of sev-

eral constructs. Later, a comparison is made with Be-

jan’s results. The optimal shape of the elemental volume

ðf0ÞS0opt strongly depends on the medium porosity, the

characteristics of the material and the collector, and the

chemical system. On the other hand, from the first

construct to higher-order constructs, the optimal shapes

ðfiÞSiopt ðiP 1Þ depend only on the medium porosity.

Table 1 reveals several additional and important

features. If e0 � 1, the optimal shapes obtained by en-

tropy number minimisation of a single transfer, such as

mass or heat transfer ½ðf0ÞS0HTopt; ðf0ÞS0MTopt� are the same
as those obtained by the minimisation of driving forces.

These optimal shapes are close to Bejan’s results [9,10].

However, if we assume an unspecified value of e0, the
additional factor ð1� e0Þ�1=2 appears in the expression
of the optimal shape for a single transfer. We didn’t

make any assumption on e0 in order to allow the

application of this study to a large range of solid–gas

reactor configurations.

Table 1 also shows that the same additional factor

ð1� e0Þ�1=2 appears in the expression of the optimal
shape obtained by the optimisation of coupled mass and

heat transfer when the value of e0 is not specified. This
factor disappears from the expression of the same opti-

mal shape when e0 � 1.

In Table 1 we also see that the optimal shape f1 from
the optimisation of the coupled transfer with e0 � 1 is

constant and equal to 2. This is same as the results of

Bejan [9]. On the other hand, when e0 is not specified, the
optimal shape is not exactly equal to 2. This value varies

from 1.5 to 2, as shown in Fig. 5.

The minimum entropy generation number of the

elemental volume ðS0Þmin depends on the medium

porosity, the characteristics of the material and the

collector, and the chemical system (see Table 2). Starting

with the first construct, the minimum entropy generation

number depends only on the medium porosity. This

leads to an important design conclusion: an optimal

design of solid–gas reactor can be found for any mate-

rial. For a given collector, and for fixed porosity and

area of the system, these optimal designs have the same

minimum entropy generation number.

Table 2 also shows that the optimal number of ele-

mental volumes in the first construct n1opt depends on
the medium porosity, the characteristics of the material
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and the collector, and the chemical system. This remark

also applies for the optimal ratio of collectors thickness

ðD1=D0Þopt. However, starting with the second construct,
the optimal number of previously optimised constructs

(niopt) and the optimal ratio of collector thicknesses
ðDi=Di�1Þopt depend only on the medium porosity.
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Fig. 6. The competition between heat and mass transfer at

elemental-volume level.
5. Numerical example

Consider four different materials (Table 3) and an

integrated heat and mass collector with specified prop-

erties: kp ¼ 10�10 m2 and kp ¼ 237 Wm�1 K�1. In this

section we compare the optimal network of heat and gas

collectors for the four different materials. From the first

to the fourth material, we have different density of ex-

panded natural graphite: the first material is less dense

than the second one, etc.

Table 3 shows the results of the optimisation at the

first construct level, and the Fig. 4 presents the optimal

network of diffusers corresponding to each material.

Each material has an optimal network design. These

optimal designs differ greatly from one material to an-
Table 3

Four numerical examples of optimised structures when the transport

k0
(Wm�1 K�1)

~k0 k0 (m2) ~k0 /1

Material 1 3 79 10�12 102 0.1

Material 2 10 23.7 10�13 103 0.1

Material 3 15 15.8 10�14 104 0.1

Material 4 30 7.9 10�16 106 0.1
other, and some of them are very complex from practical

point of view. It is important to note that all these

optimal designs have the same minimum entropy gen-

eration number. The practical conclusion is that we must

choose the material that leads to the easiest design.
6. The competition between heat and mass transfer, or the

distribution of entropy generation

Assume a material that have fixed characteristics

ðk0; k0; l; q; rÞ, and a collector that has variable charac-
teristics ðkp; kpÞ. Fig. 6 shows the evolution of the en-
tropy generation number accounting for heat and mass

transfer in an elemental volume with /1 ¼ 0:1. Recall
that g ¼ kplT=kpq2r2 characterises the collector and the
chemical system. In fact, increasing g means increasing
thermal conductivity relative to the permeability of the

collector. The minimum entropy generation number for

mass transfer increases when g increases while the min-
properties of the materials are specified

e0opt ðf1ÞS1opt ðS1Þmin n1opt ðD1D0Þopt

0.0448 1.81 5.7 2 2.37

0.0448 1.81 5.7 1.36–2 1.59

0.0448 1.81 5.7 2.69–3 3.14

0.0448 1.81 5.7 25.3–26 29.65
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imum entropy generation number for heat transfer de-

creases slightly. The total minimum entropy generation

number also increases when g increases. We conclude
that mass transfer is impeded when g becomes progres-
sively larger; and at the limit case g ¼ 0 the main limi-
tation is the thermal conduction.

Fig. 7 shows the minimum entropy generation num-

ber for the first construct. We see the same behavior at

the elemental level. The total minimum of entropy

number is constant regardless of the value of g. These
results lead to another important design conclusion: for

a given material and a fixed porosity, the minimum of

entropy number does not depend on the characteristics

of the collector.
7. Conclusion

This study showed that in the construction of tree-

shaped architecture for gas and heat flow, the method of

entropy generation minimisation is equivalent to mini-

mizing driving forces in the case of single transfer phe-

nomena. For coupled phenomena, this paper offers a

new interesting alternative which consists of optimizing

any coupled network. Kinetics has been neglected here,

but it could be included in a more realistic solid–gas

reactor model. Such a study would require numerical

work, but the method continues to apply.

This study showed that for the improvement of ex-

ergy efficiency improvement it is important to focus on

the design of an efficient heat and gas network archi-

tecture rather than enhancing the transport properties of

the reactive material. All the optimised geometries have
the same entropy generation number, since the heat of

reaction r is fixed. Consequently, any specified material
(conductivity, permeability, heat of reaction) will have

its own optimum constructal network design, and, for a

given solid–gas reaction, all these constructal reactors

will have the same entropy generation.

In summary, the constructal method allowed us to

develop the flow architecture for each available material.

Because all the architecture have the same performance

(heat and gas flow, entropy generation), the best design

can be selected based on further economics or technical

constraints.
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